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1 Alternating Direction Method of Multipliers

This part is summarized from the article [1].

1.1 Three Related Algorithms

Algorithm 1: Dual Gradient Ascent

Consider

st. Ax—b=0.
Lagrangian: L(x,v) = f(x) + v ' (Ax — b). Thus,
g(v) =inf L(x,v) = L(x*(v), V).

The dual problem is

max g(v).
Because we have oL 9x* oL
Vo) = 5 S (Ax— D),
where g }f* = 0. Based on that, the dual gradient assent algorithm is
Step 1: x' = argm}in L(x,v"), (1)
Step 2: V'™ = 1! 4 5,(Ax" — b). (2)

The dual variable v can be interpreted as a vector of prices, and v-update is called a “price update” step.
Algorithm 2: Dual Decomposition
The major benefit of the dual ascent method is that it can lead to a decentralized algorithm if f is separable.

We consider

K
min f(x) = > Flx),
k=1

K
s.t. Ax = ZAka =b,
k=1
where x = (x1,...,Xg) ' € R? x; € R, Zszl Xp = 1.



For Lagrangian:

K K
Lx,v) =Y fr(xi) + v (O Awxx —b)
k=1 k=1
K
= {fr(xx) + v (Apxs, — b/K)} .
k=1
::Lk(xk,l/)
Algorithm:
xitt = argming, Ly (xg, v?),
vitl =t 45 (AxIT — b).
So, first we broadcast v? to all threads. Then they compute each xfjl. Second, aggregate all xfjl to obtain
xtt
Algorithm 3: Method of Multipliers.
Consider
min f(x), (3)
st. Ax—b=0. (4)
This is equivalent to
min £(x) + £ 4x — b|%,
st. Ax —b=0.
The Lagrangian is called the augmented Lagrangian of (3). Denoted as
Ly(x,v) = f(x) + £l Ax = b + 7 (4x - b).
Based on that, the dual gradient assent algorithm is
Step 1: x'™! = argmin L, (x,v"), (5)
Step 2: V't = ! 4 p(Ax'T! — Db). (6)

Remark 1 o x-update adopts L, is not L.
o Step size is p is not Sq.
o This is called “method of multiplers” (MM).
Lemma 1 Suppose that x'*! is generated from MM via v?, then show that x'T1 is the stationary point of
L(x,vit!).
Proof 1 We know that x'*' minimizes L,(x,v"), then
ViL,(x vt = VAT + ATt 4 pAT (AxT —b)
= Vi) + AT + p(Ax"T — b))
=V + ATV = VI(x! L v = 0.

Q: When f is separable, then augmented Lagrangian L, is not separable. So that x-minimization step
cannot be carried out separately in parallel for each x;. How to address this issue?



1.2 ADMM

Let us consider the following convex optimization problem:

min 7(x) + g(z) ™
s.t. Ax + Bz = c, (8)

where x € R" )z € R"2,ny +ns =n, A € R™*™ and B € R™*"2, Further assume that f and g are convex.

The only difference form the general linear equality constrained problem is that the variables x,z can be
viewed splitted variable from a big one.

Example 1
min- f1(x) + f2(x).

This is equivalent to
min f1(x) + f2(2),

st.x—z=0.

Example 2
min fi(x) + fo(4x).

This is equivalent to
min f1(x) + f2(2),

st. Ax —z=0.

Example 3

m)in f(x),

st.xe X.

This is equivalent to

min f(x) + dx(z),

X,z

st.x—z=0.

Example 4 Global consensus problem is

This is equivalent to



Actually, the problem (7) can be solved by MM. Its augmented Lagrangian is

Ly(x,2,v) = f(x) +g(z) + v (Ax + Bz —c) + g”Ax + Bz —c||*.

(x!T1, 2" = argming , L,(x, 2, "),
vitl =t 4 p(AxtH 4 bzt —c).

This formulation cannot be decomposed.
So, the ADMM algorithm is

t+1

x* = argminy L,(x, 2", V"),

z' = argmin, L,(x'*!, z,17),
vt =t 4 p(Ax!H 4+ bzt —c).

This is called “unscaled form”. The corresponding “scaled form” is
v (Ax + Bz —¢) + g||Ax Y Bz —c|? = g”Ax Y Bz—ct+u/p|? - g”u/sz.

Let u = v/p, then the so-called scaled form of ADMM is

x't1 = argminy (f(x) + §||Ax + Bz' — ¢ + uf||?),
z't! = argmin,(g(z) + §[|Ax't! + Bz — c + u'|]?),
ultl = u! + Ax!*! + Bzt —c.

Example 5 (LAD Regression)

m)in |Ax — b|;.
This is equivalent to

min |z]]1,

st. Ax —z=b.

Based on ADMM algorithm, it has

t+1

arg mingHAx —z' —b+u?
=(ATA) AT (2 + b —ub).

2+ = arg min {||z||1 n §||Axf+1 —z-b+ uf||2}
= Sl/p(AXt+1 —b + ut),
where Sy, is the soft thresholding function. For utl,

ut+1 — ut + Axt+1 _ Zt+1 — b.

Example 6 (LASSO)

1
min §|\Ax —b|? + x|



This is equivalent to

1
min 2 [ 4x = bl + Alz] .

st.x—z=0.

Based on ADMM algorithm, it has

1
x'T! = arg min {2||Ax —b|*+ ng —z'+ ut|2}
X

= (ATA + pI)_l(ATb + p(z' —u)).

2+ = arg min {/\||z||1 + guxtﬂ —z+ ut||2}
z
= S)\/P(XH_1 + ut)’
where Sy, is the soft thresholding function. For u'*!,

ut+1 — ut 4 Xt+1 _ Zt+1.

Example 7

m)in f(x),

st.xe X.
This is equivalent to

min f(x) + dx(z),

X,z

st.x—z=0.

Based on ADMM algorithm, it has
x'"! = arg min {f(x) + g”X —z'+ utHQ}

= proxy,,(z" —u’).

z'™ = arg min {6X(z) + §||Xt+1 —z+ ut||2}

= mx(x!Tt +u),

. . . . 41
where Tx 15 the projection function. For u'*!,

N R

u VA

o Non-negative Least Squares: f(x) = 3| Ax —b||?, X = {x|x = 0}.
* Ridge: f(x) = 3]|Ax —b|?, X = {x]|x|| < t}.
o Basis Pursuit: f(x) = |x|1,X = {x|Ax = b}. Then

Xt = Sl/,o(zt - ut)7
zH = (x4 ul) = (1 - A(AAT) LA (x4 ut) + AT(AAT) " 1b.



1.3 Optimality Conditions of ADMM

For the convex optimization problem (7), we have the necessary and sufficient optimality conditions for it as

Vix*)+ATv* =0,
Vy(z") + ATv* =0, (
Ax* 4+ Bz* —c = 0. (1

==~
_ o ©
—_ — —

For (10), we know that z*! minimizes L,(x'™!,z,v"), then

0=Vg(z'™)+ B"v! + pBT (Ax'T! + Bz'™! —¢)
=Vg(z'™) + BT (v + p(Ax'"! + Bzt —¢))
— Vg(z!*) + BTwtt1,

So, (z!T1, v!*1) satisfies (10) in the KKT conditions.
For (9), we know that x'™! minimizes L,(x,z’,v"), then

0=V + ATv! + pAT (Ax'T + Bz! —¢)
=V T+ AT (! + p(AxT 4+ B2 —¢)) + pAT B(z! — 2'Y)
— vf(xt—‘rl) T ATVt+1 + pATB<Zt _ Zt+1>.

Thus,
St+1 = pATB(Zt-I—l _ Zt) — vf(xt+1) + Alet+17

this is called “dual residual”. Furthermore, define
Rt+1 _ Axt+1 + th —_c

as “primal residual”.

The stopping conditions of ADMM should be
IS <e R <e (12)

When € — 0, then KKT conditions are satisfied.
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