Lecture 13

Lecturer:Xiangyu Chang Scribe: Xiangyu Chang

Edited by: Xiangyu Chang

1 Alternating Direction Method of Multipliers

This part is summarized from the article [[1\]](#page-5-0).

1.1 Three Related Algorithms

Algorithm 1: Dual Gradient Ascent

Consider

$$
\min_{\mathbf{x}} f(\mathbf{x}),
$$

s.t. $A\mathbf{x} - \mathbf{b} = 0$.

Lagrangian: $L(\mathbf{x}, \nu) = f(\mathbf{x}) + \nu^\top (A\mathbf{x} - \mathbf{b})$. Thus,

$$
g(\boldsymbol{\nu}) = \inf_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\nu}) = L(\mathbf{x}^*(\boldsymbol{\nu}), \boldsymbol{\nu}).
$$

The dual problem is

 $\max_{\boldsymbol{\nu}} g(\boldsymbol{\nu})$.

Because we have

$$
\nabla g(\mathbf{\nu}) = \frac{\partial L}{\partial \mathbf{x}^*} \frac{\partial \mathbf{x}^*}{\partial \mathbf{\nu}} + \frac{\partial L}{\partial \mathbf{\nu}} = (A\mathbf{x} - \mathbf{b}),
$$

where $\frac{\partial L}{\partial x^*} = 0$. Based on that, the dual gradient assent algorithm is

Step 1:
$$
\mathbf{x}^t = \arg\min_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\nu}^t),
$$
 (1)

Step 2:
$$
\boldsymbol{\nu}^{t+1} = \boldsymbol{\nu}^t + s_t (A \mathbf{x}^t - \mathbf{b}). \tag{2}
$$

The dual variable *ν* can be interpreted as a vector of prices, and *ν*-update is called a "price update" step.

Algorithm 2: Dual Decomposition

The major benefit of the dual ascent method is that it can lead to a decentralized algorithm if *f* is separable. We consider

$$
\min_{\mathbf{x}} f(\mathbf{x}) = \sum_{k=1}^{K} f_k(\mathbf{x}_k),
$$

s.t. $A\mathbf{x} = \sum_{k=1}^{K} A_k \mathbf{x}_k = \mathbf{b},$

where $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_K)^\top \in \mathbb{R}^n, \mathbf{x}_k \in \mathbb{R}^{n_k}, \sum_{k=1}^K \mathbf{x}_k = n.$

For Lagrangian:

$$
L(\mathbf{x}, \nu) = \sum_{k=1}^{K} f_k(\mathbf{x}_k) + \nu^{\top} (\sum_{k=1}^{K} A_k \mathbf{x}_k - \mathbf{b})
$$

=
$$
\sum_{k=1}^{K} \underbrace{\{f_k(\mathbf{x}_k) + \nu^{\top} (A_k \mathbf{x}_k - \mathbf{b}/K) \}}_{:=L_k(\mathbf{x}_k, \nu)}.
$$

Algorithm:

$$
\begin{cases} \mathbf{x}_{k}^{t+1} &= \arg\min_{\mathbf{x}_{k}} L_{k}(\mathbf{x}_{k}, \boldsymbol{\nu}^{t}), \\ \boldsymbol{\nu}^{t+1} &= \boldsymbol{\nu}^{t} + s_{t}(A\mathbf{x}^{t+1} - \mathbf{b}). \end{cases}
$$

So, first we broadcast v^t to all threads. Then they compute each \mathbf{x}_k^{t+1} . Second, aggregate all \mathbf{x}_k^{t+1} to obtain \mathbf{x}^{t+1} .

Algorithm 3: Method of Multipliers.

Consider

$$
\min_{\mathbf{x}} f(\mathbf{x}),\tag{3}
$$

$$
s.t. Ax - b = 0. \tag{4}
$$

This is equivalent to

$$
\min_{\mathbf{x}} f(\mathbf{x}) + \frac{\rho}{2} ||A\mathbf{x} - \mathbf{b}||^2
$$

s.t. $A\mathbf{x} - \mathbf{b} = 0$.

The Lagrangian is called the **augmented Lagrangian** of [\(3](#page-1-0)). Denoted as

$$
L_{\rho}(\mathbf{x}, \nu) = f(\mathbf{x}) + \frac{\rho}{2} ||A\mathbf{x} - \mathbf{b}||^2 + \nu^\top (A\mathbf{x} - \mathbf{b}).
$$

Based on that, the dual gradient assent algorithm is

Step 1:
$$
\mathbf{x}^{t+1} = \arg\min_{\mathbf{x}} L_{\rho}(\mathbf{x}, \boldsymbol{\nu}^t),
$$
 (5)

,

Step 2:
$$
\nu^{t+1} = \nu^t + \rho(Ax^{t+1} - b).
$$
 (6)

Remark 1 • **x**-update adopts L_ρ *is not* L *.*

- *Step size is* ρ *is not* s_t *.*
- *This is called "method of multiplers" (MM).*

Lemma 1 *Suppose that* \mathbf{x}^{t+1} *is generated from MM via* $\boldsymbol{\nu}^t$, *then show that* \mathbf{x}^{t+1} *is the stationary point of* $L(\mathbf{x}, \boldsymbol{\nu}^{t+1}).$

Proof 1 *We know that* \mathbf{x}^{t+1} *minimizes* $L_{\rho}(\mathbf{x}, \boldsymbol{\nu}^t)$ *, then*

$$
\nabla_{\mathbf{x}} L_{\rho}(\mathbf{x}^{t+1}, \boldsymbol{\nu}^t) = \nabla f(\mathbf{x}^{t+1}) + A^{\top} \boldsymbol{\nu}^t + \rho A^{\top} (A \mathbf{x}^{t+1} - \mathbf{b})
$$

\n
$$
= \nabla f(\mathbf{x}^{t+1}) + A^{\top} (\boldsymbol{\nu}^t + \rho (A \mathbf{x}^{t+1} - \mathbf{b}))
$$

\n
$$
= \nabla f(\mathbf{x}^{t+1}) + A^{\top} \boldsymbol{\nu}^{t+1} = \nabla L(\mathbf{x}^{t+1}, \boldsymbol{\nu}^{t+1}) = 0.
$$

Q: When *f* is separable, then augmented Lagrangian L_ρ is not separable. So that **x**-minimization step cannot be carried out separately in parallel for each x_i . How to address this issue?

1.2 ADMM

Let us consider the following convex optimization problem:

$$
\min_{\mathbf{x}, \mathbf{z}} f(\mathbf{x}) + g(\mathbf{z}) \tag{7}
$$

$$
s.t. Ax + B\mathbf{z} = \mathbf{c},\tag{8}
$$

where $\mathbf{x} \in \mathbb{R}^{n_1}, \mathbf{z} \in \mathbb{R}^{n_2}, n_1 + n_2 = n, A \in \mathbb{R}^{m \times n_1}$ and $B \in \mathbb{R}^{m \times n_2}$. Further assume that f and g are convex. The only difference form the general linear equality constrained problem is that the variables **x***,* **z** can be viewed splitted variable from a big one.

Example 1

$$
\min_{\mathbf{x}} f_1(\mathbf{x}) + f_2(\mathbf{x}).
$$

This is equivalent to

$$
\min_{\mathbf{x},\mathbf{z}} f_1(\mathbf{x}) + f_2(\mathbf{z}),
$$

s.t. $\mathbf{x} - \mathbf{z} = 0$.

Example 2

 $\min_{\mathbf{x}} f_1(\mathbf{x}) + f_2(A\mathbf{x}).$

This is equivalent to

$$
\min_{\mathbf{x},\mathbf{z}} f_1(\mathbf{x}) + f_2(\mathbf{z}),
$$

s.t. $A\mathbf{x} - \mathbf{z} = 0$.

Example 3

$$
\min_{\mathbf{x}} f(\mathbf{x}),
$$

s.t. $\mathbf{x} \in \mathcal{X}$.

This is equivalent to

$$
\min_{\mathbf{x},\mathbf{z}} f(\mathbf{x}) + \delta_{\mathcal{X}}(\mathbf{z}),
$$

s.t. $\mathbf{x} - \mathbf{z} = 0$.

Example 4 *Global consensus problem is*

$$
\min_{\mathbf{x}} \sum_{j=1}^{J} f_j(\mathbf{x}).
$$

This is equivalent to

$$
\min_{\mathbf{x}_i, \mathbf{x}} \sum_{j=1}^J f_j(\mathbf{x}_j),
$$

s.t. $\mathbf{x}_j - \mathbf{x} = 0$.

Actually, the problem ([7\)](#page-2-0) can be solved by MM. Its augmented Lagrangian is

$$
L_{\rho}(\mathbf{x}, \mathbf{z}, \nu) = f(\mathbf{x}) + g(\mathbf{z}) + \nu^{\top} (A\mathbf{x} + B\mathbf{z} - \mathbf{c}) + \frac{\rho}{2} ||A\mathbf{x} + B\mathbf{z} - \mathbf{c}||^{2}.
$$

$$
\begin{cases} (\mathbf{x}^{t+1}, \mathbf{z}^{t+1}) = \arg \min_{\mathbf{x}, \mathbf{z}} L_{\rho}(\mathbf{x}, \mathbf{z}, \nu^{t}), \\ \nu^{t+1} = \nu^{t} + \rho (A\mathbf{x}^{t+1} + b\mathbf{z}^{t+1} - \mathbf{c}). \end{cases}
$$

This formulation cannot be decomposed.

So, the ADMM algorithm is

$$
\begin{cases}\n\mathbf{x}^{t+1} = \arg \min_{\mathbf{x}} L_{\rho}(\mathbf{x}, \mathbf{z}^t, \boldsymbol{\nu}^t), \\
\mathbf{z}^{t+1} = \arg \min_{\mathbf{z}} L_{\rho}(\mathbf{x}^{t+1}, \mathbf{z}, \boldsymbol{\nu}^t), \\
\mathbf{v}^{t+1} = \mathbf{v}^t + \rho(A\mathbf{x}^{t+1} + b\mathbf{z}^{t+1} - \mathbf{c}).\n\end{cases}
$$

This is called "unscaled form". The corresponding "scaled form" is

$$
\boldsymbol{\nu}^\top (A\mathbf{x} + B\mathbf{z} - \mathbf{c}) + \frac{\rho}{2} \|A\mathbf{x} + B\mathbf{z} - \mathbf{c}\|^2 = \frac{\rho}{2} \|A\mathbf{x} + B\mathbf{z} - \mathbf{c} + \boldsymbol{\nu}/\rho\|^2 - \frac{\rho}{2} \|\boldsymbol{\nu}/\rho\|^2.
$$

Let $\mathbf{u} = \nu / \rho$, then the so-called scaled form of ADMM is

$$
\begin{cases}\n\mathbf{x}^{t+1} = \arg \min_{\mathbf{x}} (f(\mathbf{x}) + \frac{\rho}{2} ||A\mathbf{x} + B\mathbf{z}^t - \mathbf{c} + \mathbf{u}^t||^2), \\
\mathbf{z}^{t+1} = \arg \min_{\mathbf{z}} (g(\mathbf{z}) + \frac{\rho}{2} ||A\mathbf{x}^{t+1} + B\mathbf{z} - \mathbf{c} + \mathbf{u}^t||^2), \\
\mathbf{u}^{t+1} = \mathbf{u}^t + A\mathbf{x}^{t+1} + B\mathbf{z}^{t+1} - \mathbf{c}.\n\end{cases}
$$

Example 5 *(LAD Regression)*

$$
\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|_1.
$$

This is equivalent to

$$
\min_{\mathbf{x}, \mathbf{z}} \|\mathbf{z}\|_1,
$$

s.t. $A\mathbf{x} - \mathbf{z} = \mathbf{b}$.

Based on ADMM algorithm, it has

$$
\mathbf{x}^{t+1} = \arg\min_{\mathbf{x}} \frac{\rho}{2} ||A\mathbf{x} - \mathbf{z}^t - \mathbf{b} + \mathbf{u}^t||^2
$$

$$
= (A^\top A)^{-1} A^\top (\mathbf{z}^t + \mathbf{b} - \mathbf{u}^t).
$$

$$
\mathbf{z}^{t+1} = \arg\min_{\mathbf{z}} \left\{ \|\mathbf{z}\|_1 + \frac{\rho}{2} \|A\mathbf{x}^{t+1} - \mathbf{z} - \mathbf{b} + \mathbf{u}^t\|^2 \right\}
$$

$$
= S_{1/\rho}(A\mathbf{x}^{t+1} - \mathbf{b} + \mathbf{u}^t),
$$

where $S_{1/\rho}$ *is the soft thresholding function. For* \mathbf{u}^{t+1} ,

$$
\mathbf{u}^{t+1} = \mathbf{u}^t + A\mathbf{x}^{t+1} - \mathbf{z}^{t+1} - \mathbf{b}.
$$

Example 6 *(LASSO)*

$$
\min_{\mathbf{x}} \ \frac{1}{2} \|A\mathbf{x} - \mathbf{b}\|^2 + \lambda \|\mathbf{x}\|_1.
$$

This is equivalent to

$$
\min_{\mathbf{x}, \mathbf{z}} \frac{1}{2} ||A\mathbf{x} - \mathbf{b}||^2 + \lambda ||\mathbf{z}||_1,
$$

s.t. $\mathbf{x} - \mathbf{z} = 0.$

Based on ADMM algorithm, it has

$$
\mathbf{x}^{t+1} = \arg \min_{\mathbf{x}} \left\{ \frac{1}{2} ||A\mathbf{x} - \mathbf{b}||^2 + \frac{\rho}{2} ||\mathbf{x} - \mathbf{z}^t + \mathbf{u}^t||^2 \right\}
$$

= $(A^\top A + \rho I)^{-1} (A^\top \mathbf{b} + \rho(\mathbf{z}^t - \mathbf{u}^t)).$

$$
\mathbf{z}^{t+1} = \arg \min_{\mathbf{z}} \left\{ \lambda ||\mathbf{z}||_1 + \frac{\rho}{2} ||\mathbf{x}^{t+1} - \mathbf{z} + \mathbf{u}^t||^2 \right\}
$$

= $S_{\lambda/\rho} (\mathbf{x}^{t+1} + \mathbf{u}^t),$

where $S_{\lambda/\rho}$ *is the soft thresholding function. For* \mathbf{u}^{t+1} ,

$$
\mathbf{u}^{t+1} = \mathbf{u}^t + \mathbf{x}^{t+1} - \mathbf{z}^{t+1}.
$$

Example 7

$$
\min_{\mathbf{x}} f(\mathbf{x}),
$$

s.t. $\mathbf{x} \in \mathcal{X}$.

This is equivalent to

$$
\min_{\mathbf{x},\mathbf{z}} f(\mathbf{x}) + \delta_{\mathcal{X}}(\mathbf{z}),
$$

s.t. $\mathbf{x} - \mathbf{z} = 0$.

Based on ADMM algorithm, it has

$$
\mathbf{x}^{t+1} = \arg\min_{\mathbf{x}} \left\{ f(\mathbf{x}) + \frac{\rho}{2} ||\mathbf{x} - \mathbf{z}^t + \mathbf{u}^t||^2 \right\}
$$

$$
= prox_{f/\rho} (\mathbf{z}^t - \mathbf{u}^t).
$$

$$
\mathbf{z}^{t+1} = \arg\min_{\mathbf{z}} \left\{ \delta_{\mathcal{X}}(\mathbf{z}) + \frac{\rho}{2} ||\mathbf{x}^{t+1} - \mathbf{z} + \mathbf{u}^t||^2 \right\}
$$

$$
= \pi_{\mathcal{X}}(\mathbf{x}^{t+1} + \mathbf{u}^t),
$$

where $\pi_{\mathcal{X}}$ *is the projection function. For* \mathbf{u}^{t+1} ,

$$
\mathbf{u}^{t+1} = \mathbf{u}^t + \mathbf{x}^{t+1} - \mathbf{z}^{t+1}.
$$

- *Non-negative Least Squares:* $f(\mathbf{x}) = \frac{1}{2} ||A\mathbf{x} \mathbf{b}||^2$, $\mathcal{X} = {\mathbf{x}|\mathbf{x} \succeq 0}$.
- *Ridge:* $f(\mathbf{x}) = \frac{1}{2} ||A\mathbf{x} \mathbf{b}||^2$, $\mathcal{X} = {\mathbf{x}||\mathbf{x}|| \le t}.$
- *Basis Pursuit: f*(**x**) = *∥***x***∥*1*,* **X** = *{***x***|A***x** = **b***}. Then*

$$
\begin{cases}\n\mathbf{x}^{t+1} = S_{1/\rho}(\mathbf{z}^t - \mathbf{u}^t), \\
\mathbf{z}^{t+1} = \pi_{\mathcal{X}}(\mathbf{x}^{t+1} + \mathbf{u}^t) = (I - A(AA^{\top})^{-1}A)(\mathbf{x}^{t+1} + \mathbf{u}^t) + A^{\top}(AA^{\top})^{-1}\mathbf{b}.\n\end{cases}
$$

1.3 Optimality Conditions of ADMM

For the convex optimization problem ([7\)](#page-2-0), we have the necessary and sufficient optimality conditions for it as

$$
\nabla f(\mathbf{x}^*) + A^\top \mathbf{\nu}^* = 0,\tag{9}
$$

$$
\nabla g(\mathbf{z}^*) + A^\top \mathbf{\nu}^* = 0,\tag{10}
$$

$$
A\mathbf{x}^* + B\mathbf{z}^* - \mathbf{c} = 0. \tag{11}
$$

For ([10\)](#page-5-1), we know that \mathbf{z}^{t+1} minimizes $L_{\rho}(\mathbf{x}^{t+1}, \mathbf{z}, \boldsymbol{\nu}^t)$, then

$$
0 = \nabla g(\mathbf{z}^{t+1}) + B^{\top} \boldsymbol{\nu}^t + \rho B^{\top} (A \mathbf{x}^{t+1} + B \mathbf{z}^{t+1} - \mathbf{c})
$$

= $\nabla g(\mathbf{z}^{t+1}) + B^{\top} (\boldsymbol{\nu}^t + \rho (A \mathbf{x}^{t+1} + B \mathbf{z}^{t+1} - \mathbf{c}))$
= $\nabla g(\mathbf{z}^{t+1}) + B^{\top} \boldsymbol{\nu}^{t+1}.$

So, $(\mathbf{z}^{t+1}, \boldsymbol{\nu}^{t+1})$ satisfies [\(10](#page-5-1)) in the KKT conditions.

For ([9\)](#page-5-2), we know that \mathbf{x}^{t+1} minimizes $L_{\rho}(\mathbf{x}, \mathbf{z}^t, \boldsymbol{\nu}^t)$, then

$$
0 = \nabla f(\mathbf{x}^{t+1}) + A^{\top} \boldsymbol{\nu}^t + \rho A^{\top} (A \mathbf{x}^{t+1} + B \mathbf{z}^t - \mathbf{c})
$$

= $\nabla f(\mathbf{x}^{t+1}) + A^{\top} (\boldsymbol{\nu}^t + \rho (A \mathbf{x}^{t+1} + B \mathbf{z}^{t+1} - \mathbf{c})) + \rho A^{\top} B(\mathbf{z}^t - \mathbf{z}^{t+1})$
= $\nabla f(\mathbf{x}^{t+1}) + A^{\top} \boldsymbol{\nu}^{t+1} + \rho A^{\top} B(\mathbf{z}^t - \mathbf{z}^{t+1}).$

Thus,

$$
S^{t+1} := \rho A^\top B(\mathbf{z}^{t+1} - \mathbf{z}^t) = \nabla f(\mathbf{x}^{t+1}) + A^\top \boldsymbol{\nu}^{t+1},
$$

this is called "dual residual". Furthermore, define

$$
R^{t+1} = A\mathbf{x}^{t+1} + B\mathbf{z}^t - \mathbf{c}
$$

as "primal residual".

The stopping conditions of ADMM should be

$$
||S^{t+1}|| \le \epsilon, \ ||R^{t+1}|| \le \epsilon. \tag{12}
$$

When $\epsilon \to 0$, then KKT conditions are satisfied.

References

[1] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. *Foundations and Trends in Machine Learning*, 3(1):1–122, 2010.