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1 Alternating Direction Method of Multipliers

This part is summarized from the article [1].

1.1 Three Related Algorithms

Algorithm 1: Dual Gradient Ascent

Consider

min
x

f(x),

s.t. Ax− b = 0.

Lagrangian: L(x,ν) = f(x) + ν⊤(Ax− b). Thus,

g(ν) = inf
x

L(x,ν) = L(x∗(ν),ν).

The dual problem is

max
ν

g(ν).

Because we have
∇g(ν) =

∂L

∂x∗
∂x∗

∂ν
+

∂L

∂ν
= (Ax− b),

where ∂L
∂x∗ = 0. Based on that, the dual gradient assent algorithm is

Step 1: xt = argmin
x

L(x,νt), (1)

Step 2: νt+1 = νt + st(Axt − b). (2)

The dual variable ν can be interpreted as a vector of prices, and ν-update is called a “price update” step.

Algorithm 2: Dual Decomposition

The major benefit of the dual ascent method is that it can lead to a decentralized algorithm if f is separable.

We consider

min
x

f(x) =

K∑
k=1

fk(xk),

s.t. Ax =

K∑
k=1

Akxk = b,

where x = (x1, . . . ,xK)⊤ ∈ Rn,xk ∈ Rnk ,
∑K

k=1 xk = n.
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For Lagrangian:

L(x,ν) =

K∑
k=1

fk(xk) + ν⊤(

K∑
k=1

Akxk − b)

=

K∑
k=1

{
fk(xk) + ν⊤(Akxk − b/K)

}︸ ︷︷ ︸
:=Lk(xk,ν)

.

Algorithm: {
xt+1
k = argminxk

Lk(xk,ν
t),

νt+1 = νt + st(Axt+1 − b).

So, first we broadcast νt to all threads. Then they compute each xt+1
k . Second, aggregate all xt+1

k to obtain
xt+1.

Algorithm 3: Method of Multipliers.

Consider

min
x

f(x), (3)

s.t. Ax− b = 0. (4)

This is equivalent to

min
x

f(x) +
ρ

2
∥Ax− b∥2,

s.t. Ax− b = 0.

The Lagrangian is called the augmented Lagrangian of (3). Denoted as

Lρ(x,ν) = f(x) +
ρ

2
∥Ax− b∥2 + ν⊤(Ax− b).

Based on that, the dual gradient assent algorithm is

Step 1: xt+1 = argmin
x

Lρ(x,ν
t), (5)

Step 2: νt+1 = νt + ρ(Axt+1 − b). (6)

Remark 1 • x-update adopts Lρ is not L.

• Step size is ρ is not st.

• This is called “method of multiplers” (MM).

Lemma 1 Suppose that xt+1 is generated from MM via νt, then show that xt+1 is the stationary point of
L(x,νt+1).

Proof 1 We know that xt+1 minimizes Lρ(x,ν
t), then

∇xLρ(x
t+1,νt) = ∇f(xt+1) +A⊤νt + ρA⊤(Axt+1 − b)

= ∇f(xt+1) +A⊤(νt + ρ(Axt+1 − b))

= ∇f(xt+1) +A⊤νt+1 = ∇L(xt+1,νt+1) = 0.

Q: When f is separable, then augmented Lagrangian Lρ is not separable. So that x-minimization step
cannot be carried out separately in parallel for each xi. How to address this issue?
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1.2 ADMM

Let us consider the following convex optimization problem:

min
x,z

f(x) + g(z) (7)

s.t. Ax+Bz = c, (8)

where x ∈ Rn1 , z ∈ Rn2 , n1 + n2 = n,A ∈ Rm×n1 and B ∈ Rm×n2 . Further assume that f and g are convex.

The only difference form the general linear equality constrained problem is that the variables x, z can be
viewed splitted variable from a big one.

Example 1
min
x

f1(x) + f2(x).

This is equivalent to

min
x,z

f1(x) + f2(z),

s.t. x− z = 0.

Example 2
min
x

f1(x) + f2(Ax).

This is equivalent to

min
x,z

f1(x) + f2(z),

s.t. Ax− z = 0.

Example 3

min
x

f(x),

s.t. x ∈ X .

This is equivalent to

min
x,z

f(x) + δX (z),

s.t. x− z = 0.

Example 4 Global consensus problem is

min
x

J∑
j=1

fj(x).

This is equivalent to

min
xi,x

J∑
j=1

fj(xj).,

s.t. xj − x = 0.
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Actually, the problem (7) can be solved by MM. Its augmented Lagrangian is

Lρ(x, z,ν) = f(x) + g(z) + ν⊤(Ax+Bz− c) +
ρ

2
∥Ax+Bz− c∥2.{

(xt+1, zt+1) = argminx,z Lρ(x, z,ν
t),

νt+1 = νt + ρ(Axt+1 + bzt+1 − c).

This formulation cannot be decomposed.

So, the ADMM algorithm is 
xt+1 = argminx Lρ(x, z

t,νt),

zt+1 = argminz Lρ(x
t+1, z,νt),

νt+1 = νt + ρ(Axt+1 + bzt+1 − c).

This is called “unscaled form”. The corresponding “scaled form” is

ν⊤(Ax+Bz− c) +
ρ

2
∥Ax+Bz− c∥2 =

ρ

2
∥Ax+Bz− c+ ν/ρ∥2 − ρ

2
∥ν/ρ∥2.

Let u = ν/ρ, then the so-called scaled form of ADMM is


xt+1 = argminx(f(x) +

ρ
2∥Ax+Bzt − c+ ut∥2),

zt+1 = argminz(g(z) +
ρ
2∥Axt+1 +Bz− c+ ut∥2),

ut+1 = ut +Axt+1 +Bzt+1 − c.

Example 5 (LAD Regression)
min
x

∥Ax− b∥1.

This is equivalent to

min
x,z

∥z∥1,

s.t. Ax− z = b.

Based on ADMM algorithm, it has

xt+1 = argmin
x

ρ

2
∥Ax− zt − b+ ut∥2

= (A⊤A)−1A⊤(zt + b− ut).

zt+1 = argmin
z

{
∥z∥1 +

ρ

2
∥Axt+1 − z− b+ ut∥2

}
= S1/ρ(Axt+1 − b+ ut),

where S1/ρ is the soft thresholding function. For ut+1,

ut+1 = ut +Axt+1 − zt+1 − b.

Example 6 (LASSO)

min
x

1

2
∥Ax− b∥2 + λ∥x∥1.
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This is equivalent to

min
x,z

1

2
∥Ax− b∥2 + λ∥z∥1,

s.t. x− z = 0.

Based on ADMM algorithm, it has

xt+1 = argmin
x

{
1

2
∥Ax− b∥2 + ρ

2
∥x− zt + ut∥2

}
= (A⊤A+ ρI)−1(A⊤b+ ρ(zt − ut)).

zt+1 = argmin
z

{
λ∥z∥1 +

ρ

2
∥xt+1 − z+ ut∥2

}
= Sλ/ρ(x

t+1 + ut),

where Sλ/ρ is the soft thresholding function. For ut+1,

ut+1 = ut + xt+1 − zt+1.

Example 7

min
x

f(x),

s.t. x ∈ X .

This is equivalent to

min
x,z

f(x) + δX (z),

s.t. x− z = 0.

Based on ADMM algorithm, it has

xt+1 = argmin
x

{
f(x) +

ρ

2
∥x− zt + ut∥2

}
= proxf/ρ(z

t − ut).

zt+1 = argmin
z

{
δX (z) +

ρ

2
∥xt+1 − z+ ut∥2

}
= πX (xt+1 + ut),

where πX is the projection function. For ut+1,

ut+1 = ut + xt+1 − zt+1.

• Non-negative Least Squares: f(x) = 1
2∥Ax− b∥2,X = {x|x ⪰ 0}.

• Ridge: f(x) = 1
2∥Ax− b∥2,X = {x|∥x∥ ≤ t}.

• Basis Pursuit: f(x) = ∥x∥1,X = {x|Ax = b}. Then{
xt+1 = S1/ρ(z

t − ut),

zt+1 = πX (xt+1 + ut) = (I −A(AA⊤)−1A)(xt+1 + ut) +A⊤(AA⊤)−1b.
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1.3 Optimality Conditions of ADMM

For the convex optimization problem (7), we have the necessary and sufficient optimality conditions for it as

∇f(x∗) +A⊤ν∗ = 0, (9)
∇g(z∗) +A⊤ν∗ = 0, (10)
Ax∗ +Bz∗ − c = 0. (11)

For (10), we know that zt+1 minimizes Lρ(x
t+1, z,νt), then

0 = ∇g(zt+1) +B⊤νt + ρB⊤(Axt+1 +Bzt+1 − c)

= ∇g(zt+1) +B⊤(νt + ρ(Axt+1 +Bzt+1 − c))

= ∇g(zt+1) +B⊤νt+1.

So, (zt+1,νt+1) satisfies (10) in the KKT conditions.

For (9), we know that xt+1 minimizes Lρ(x, z
t,νt), then

0 = ∇f(xt+1) +A⊤νt + ρA⊤(Axt+1 +Bzt − c)

= ∇f(xt+1) +A⊤(νt + ρ(Axt+1 +Bzt+1 − c)) + ρA⊤B(zt − zt+1)

= ∇f(xt+1) +A⊤νt+1 + ρA⊤B(zt − zt+1).

Thus,
St+1 := ρA⊤B(zt+1 − zt) = ∇f(xt+1) +A⊤νt+1,

this is called “dual residual”. Furthermore, define

Rt+1 = Axt+1 +Bzt − c

as “primal residual”.

The stopping conditions of ADMM should be

∥St+1∥ ≤ ϵ, ∥Rt+1∥ ≤ ϵ. (12)

When ϵ → 0, then KKT conditions are satisfied.
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